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ABSTRACT

The "6-3" triangular element has been widely used in consolidation analysis because it was
the first one to be introduced and gave satisfactory results in most cases. Yet, it has a
directional bias as the transient response depends on the orientation of the triangles in the
mesh, particularly at the early stages of loading. As the time elapses this defect reduces until
almost vanishes by the end of the loading history. The purpose of the present investigation
was to illustrate the directional bias of the "6-3" element and provide a solution to this
problem by comparing its performance with that of the "8-4" element in solving a problem
with known analytical solution. It was found that by averaging the solution of the "6-3"
element for non symmetric mesh or by using symmetric mesh, the "6-3" element provides a
solution very close to that given by the "8-4" element as well as the analytical solution.
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INTRODUCTION

Sandhu and Wilson [1, 2] presented the first
application of the finite element method to
analysis of seepage in elastic media.
Considerable progress has been made in the
theoretical ~ formulation as well as
computational procedures. This includes
variational formulations admitting limited
smoothness of finite element bases [3, 4] and
experimentation with several different spatial
interpolation schemes and investigation of
various temporal approximation methods [5-
11]. The finite element method has been

applied to saturated soils exhibiting
secondary compression [7, 10], nonlinear
soil behavior [11-13], and to finite

deformation [12]. The method has been
extended by Aboustait [14, 15] to formulate
the coupled theories of thermoelastic and
thermoplastic ~ consolidation  and  the
associated variational principles. Further, the
formulation was extended to include inertia
and damping effects resulting in finite
element Galerkin formulation for a dynamic
consolidation theory by Aboustait and

Sandhu [16, 17]. Least-Squares mixed finite
element formulation is presented for Biot's
consolidation using piecewise linear and
quadratic interpolation for the fluid pressure
and for the displacement, respectively [18].
Very Recently new approaches have been
advanced based on mixed formulations. A
fully coupled 3-D mixed finite element

model is developed with the aim at
alleviating the pore pressure numerical
oscillations at the interface between

materials with different permeability [19].

In spatial discretization, Sandhu [1] proposed
that the order of terms appearing in a
convolution product in the variational
principle be the same. This produced the
"composite" element in which the order of
polynomial interpolation for displacements
was higher than that for fluid pressures. The
composite element first proposed by Sandhu
[1, 2] and used by Hwang [20] and others,
was the "6-3" element with quadratic
interpolation for displacements and linear
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Figure (1): The “6-3” and “8-4” Composite Elements

interpolation for fluid pressures over triangular
regions. Later, Sandhu [6] introduced the "8-4"
element which had eight point biquadratic
interpolations for displacements and four point
isoperimetric quadrilateral for fluid pressures.
Figure (1) illustrates the"6-3"and the "8-4"
elements. Later this element was extended by
Aboustait [14, 15] to obtain the "8-4-4" element
which includes another four point isoperimetric
quadrilateral interpolations for temperature
fields. It is used in solving thermoelastic and
thermoplastic consolidation problems. Several
spatial interpolation schemes, besides the
composite elements, have been tried by various
investigators. Ghaboussi [5] introduced the "6-4"
element which uses four point isoparametric
quadrilaterals for both fields. However, two
additional incompatible modes were included in
the displacement approximation. This element
has the economy while the additional "local"
mode gives it the character of a "higher order"
scheme. Smith [21] presented the "4-4" element
and the formulation was similar to Ghaboussi's
except that no incompatible modes were used.
Prevost [9] proposed cautious use of "reduced
integration" in conjunction with Smith's "4-4"
element. Yokoo [22], Booker [23], and Vermeer
[24] wused triangular elements with linear
interpolation for both displacement and fluid
pressure fields, i.e., "3-3" element.

All investigators have generally reported success
with whatever scheme they used. Comparative
studies of different elements are rare. Some
comparisons between numerical performances of
the "6-3" and the "8-4" elements were attempted
by Sandhu et al [6, 7] and between the "6-4"and
the "8-4" elements by Aboustait e al [25, 26]. In
evaluating various candidate schemes, [6, 7]
proposed that an acceptable method meet the
following requirements in addition to efficiency
and accuracy;

i. The interpolation scheme must conform to the
assumptions regarding continuity as well as

differentiability used in setting up the governing
variational formulation.

ii. [t should be possible to generate the
"undrained" solution, i.e. the state of fluid
pressures and displacement at time t = O+.

iii. For sufficiently small time steps, the scheme
should be insensitive to the choice of the time-
step size.

Elements "6-3", "6-4" and "8-4" satisfy these
previous requirements. However, the "6-3" and
"8-4" composite elements are too expensive to be
used in large problems. This has discouraged
extension of the analysis to three-dimensions,
and to nonlinear analysis and dynamic problems.
The "4-4" element is more economical but has
oscillatory errors [7]. The "6-3" element gives
satisfactory results in most cases and the "8-4"
element gives results almost identical to those
from the "6-3" element but is more economical as
it requires fewer nodal points and has less band-
width [6, 7]. A comparison between the "6-4"
and "8-4" elements was carried by Aboustait et al
[25, 26] in solving Terzaghi and Gibson
problems. The "6-4" element gave a solution
identical to that given by the "8-4"element but
with significant savings in computational time.
Also, it is distinctly superior to the "4-4" element
as it does not have the oscillatory error of the "4-
4" element. Further, it directly gives the solution
at time = 0+. This is because, in eliminating the
additional degrees of freedom, the static
condensation would, in general, result in non-
zero diagonal quantities. At the same time, it has
the economy of the simpler element.

The "6-3" triangular element still has been widely
used particularly in commercial packages. Yet, it
has the defect of directional bias since the
transient response depends on the orientation of
the triangles in the mesh.

The purpose of the present investigation was to
illustrate the directional bias of the "6-3" element



and provide a solution to this problem. This had
been achieved by performing another comparison
between the performance of the "6-3"and the"8-
4" elements in solving the same Terzaghi's
problem in [6, 7]. Same boundary conditions,
same loading, same material properties and same
spatial and temporal discretizations were
considered. However more attention was given to
the transient response particularly at the early
stages of loadings. Plane strain formulation is
considered for both elements to solve Terzaghi's
problem of one-dimensional consolidation that
has well known analytical solution.

EQUATIONS GOVERNING LINEAR
ELASTIC SOIL CONSOLDATION
Assuming pore water to be incompressible, the
equation of force equilibrium of elementary
volumes, within the spatial region of interest R,
may be written in standard indicial notation as,

(11;
[Eklij“k,l]’i+7f,j+,@cj =0 1)

Also, the mass continuity equation over that
region can be expressed as;

[Kij(”’i+p2]ci)]’j+uj,j:0 (2)

i.e., the out flow from any closed surface equals
to the rate of volume reduction. Where u;, fi, Exj,
K;;, respectively denote the Cartesian components
of the displacement vector, the body force vector
per unit mass, the isothermal elasticity tensor and
the permeability tensor. p is the mass density of
the saturated soil and p, is that of water, 7is the
pore water pressure. With these field equations
we associate the following boundary conditions;

u, =1u, on S, 3)
t,=T;n; =t on S, “)
T=7 on S, ®)
Q:qi ; —Q on S4 (6)

Here, t; and q; are components of the traction and
fluid flux vectors associated with surfaces
embedded in the closure of R. S; and S, are
complementary subsets of the boundary of the
spatial region of interest and so are S3, Sy. T;j are

components of the total stress tensor which is
related to the effective stress tensor 0;; and pore

pressure by;
T, =0, + 70, (7)

8 is the Kronecker delta. Noting that the
effective stress tensor is related to the solid
deformation ¢;; by;

o, = Eijklgkl 3)

The initial conditions for the problem are
on R €)
7(x;,0) =7(0) (10)

The variational principle corresponding to a the
above mentioned field equations, boundary and
initial conditions can be expressed as;

J(u’ﬂ)zj[%o-ij ey — 0w Ay,
¢

ui(xj’o):ui(o)

on R

—387%q; (4P, f1) v
- J.t: *uds — IQ*g*ﬂds
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Where g = 1 and * is indication of convolution.
Q and t ; are the prescribed fluid flow and
tractions on S, and S, respectively.

FINITE ELEMENT FORMULATION:

Discretization of the governing functional for the
two-field formulation followed by application of

the wvariational principle (11) leads to the
following matrix equation.
Kuu K pu u(tl )
+
Kpu - aAtK PP 7[(1‘1)
= 12)
(-AK ,7(ty)| | .



Where (ty, t;) is the single time step of interest,
and;

At=t - (13)

{u(t))}, {u(ty)}= vectors of nodal point values of
the components of the displacement at time t;, to,
respectively

{7 (t)},{7 ()} = vectors of nodal point values
of the pore water pressure at time t;, to,
respectively.

{p1} = the vector of nodal point loads including
applied nodal loads, boundary tractions, body
forces, initial stresses and effect of displacement
constraints .

{p2} = the vector of nodal point fluxes including
applied nodal fluxes, boundary fluxes,
body force effects and effects of specified pore
water pressures.

[Kuu] = spatial "stiffness matrix" for the elastic
soil.

[Kop] = the spatial "flow matrix" for the
compressible fluid and At= 1.

o = the coefficient characterizing single-step
temporal discretization.

[Koul = the coupling matrix representing the
influence of pore pressure in the force
equilibrium equation.

[kpu] T = the coupling matrix representing the
influence of soil volume change upon the nodal
point fluid pressure.

[Kopl = the spatial fluid compressibility matrix.

The matrix [K,,] depends upon the interpolation
scheme for displacements and [K,,] depend upon
the interpolation scheme for the pore water
pressures. The coupling matrix [K,,] involves
spatial interpolation for both the field variables.
The temporal discretization for the single step
scheme is reflected in the value of the
coefficienta. For linear interpolation o = 0.5.

Equation (12) includes the "natural!" boundary
conditions expressed by Equation (4) and (6).
Equation (3) and (5) are satisfied by explicitly

requiring v, = #on S; and zm=Zon S;.

Development of the vectors and matrices
appearing in Equation (12) is given in [25].

Terzaghi's problem of one-dimensional
consolidation

A computer program was developed for plane
strain consolidation using both  "8-4" and "6-3"
elements. The code was used to solve Terzaghi's
problem of one-dimensional consolidation. For
this problem, the theoretical solutions are known
and, therefore, precise comparison was possible.

For Terzaghi's problem, the dimensions of the
consolidating soil column and soil properties
were the same as in [6, 7, 23, 24]; i.e. soil depth h
= 7 m, modulus of elasticity E = 6000 t/m’,
Poisson's ratio = 0.4, coefficient of permeability
K = 4x10° nvs. Figure (2) illustrates the
geometry and the boundary conditions of the
problem.
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Figure (2): One dimensional Consolidation

Generally, finite element approximation involves
discretization in the spatial as well as temporal
domain. Accordingly, the investigation reported
herein covered these two aspects. For the spatial
discretizations, three different meshes were
considered as shown in figure (3). Figure (3.a)
and (3.b) illustrate biased and symmetric meshes
that were used for the "6-3" element, while
Figure (3.c) illustrates the mesh used for the "8-
4" element. The first mesh for the "6-3" element
consisted of 18 elements with 57 nodes and the
second mesh consisted of 36 elements with 84
nodes. While the "8-4" element mesh consisted
of 9 elements with 48 nodes.
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a) Non-Symmetric Mesh for
the “6-3” Element

b) Symmetric Mesh for the
“6-3” Element

¢) Mesh for the
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Figure (3): Finite Element Discretization

In the temporal discretization, linear
interpolation was considered i.e., the
coefficient o0 was given the value of 0.5. For
each of the spatial discretization schemes the

following  temporal  partitioning  was
considered starting with t= 0.

10 steps of At =0.01 over [0, 0. 1]
10 steps of At =0.1 over [0.1, 1.1]
10 steps of At=10 over [1.1, 101.1]
10 steps of At=100 over [101.1, 1101.1]

8 steps of At =1000 over [1101.1,9101.1]

Where, the time is in seconds. In this scheme
At changes in a ratio 10:1 except that the
change from At = 0.1 to At = 10 has a ratio of
100:1.

RESULTS OF ANALYSIS

Table 1 shows the time settlement history for
the three types of discretizations as well as
the analytical solution. The settlements

which are the vertical displacements of the
two corner nodes on the top surface of the
soil column were recorded. For the "6-3"
element with non-symmetric mesh, the
settlements of these two nodes are
completely different at the early stages of
loading, while they are the same for the other
two meshes. As the time elapses, this
difference decreases until it vanishes near the
end of the loading history. Meanwhile the
average settlement of these two nodes in the
non-symmetric mesh for the "6-3" element
practically coincided with the settlement of
the symmetric mesh for the "6-3" element as
well as response of the "8-4" element
throughout the time domain and also was in
good agreement with the analytical solution.
Overestimates of early settlement are
associated with all spatial discretizations
schemes considered. Also, it was found that
the surface settlement calculated s
insensitive to the temporal discretizations
and the sudden change in the size of At.



Table (1): Surface Settlement History

Symmetric Mesh Non-Symmetric Mesh for the “6-3” Element
Time (sec) for the “6-3” " :ETent Exact Solution
Element

Left Node Right Node Average
0.02 4.6412E-06 2.7936E-06 7.0104E-06 4.9020E-06 5.2770E-06 5.7255E-06
0.6 1.5091E-05 1.6537E-05 1.3973E-05 1.5255E-05 1.5881E-05 1.5459E-05
1.1 2.0646E-05 2.1661E-05 1.9801E-05 2.0731E-05 2.1221E-05 2.0877E-05
211 8.1150E-05 8.0815E-05 8.1492E-05 8.1154E-05 9.1394E-05 9.1423E-05
41.1 1.2051E-04 1.2034E-04 1.2066E-04 1.2050E-04 1.2815E-04 1.2760E-04
81.1 1.7459E-04 1.7450E-04 1.7467E-04 1.7458E-04 1.8022E-04 1.7924E-04
301.1 3.1443E-04 3.1440E-04 3.1446E-04 3.1443E-04 3.4446E-04 3.4205E-04
901.1 4.9727E-04 4.9726E-04 4.9727E-04 4.9727E-04 5.0352E-04 5.0166E-04
21011 5.3400E-04 5.3400E-04 5.3400E-04 5.3400E-04 5.4778E-04 5.4253E-04
4101.1 5.4425E-04 5.4425E-04 5.4425E-04 5.4425E-04 5.4456E-04 5.4443E-04
6101.1 5.4444E-04 5.4444E-04 5.4444E-04 5.4444E-04 5.4440E-04 5.4444E-04
9101.1 5.4445E-04 5.4445E-04 5.4444E-04 5.4444E-04 5.4440E-04 5.4444E-04

Table 2 and figure (4) show the pore
pressure history for the three types of
discretizations as well as the analytical
solution. The pore pressure at the two
corner nodes located at depth = 2/70 of the
total height, measured from the top surface
of the soil column, were recorded. Same as
for the surface settlement, the pore
pressure at these nodes in the non-
symmetric mesh for the "6-3" are
completely different at the early stages of
loading, while they are the same for the
other two meshes. As the time elapses, this
difference decreases until vanishes near
the end of the loading history. Also, the
average pore pressure at these two nodes
for the non-symmetric mesh for the "6-3"
element practically coincided with the
response of the symmetric mesh for the "6-
3" element as well as the "8-4" element
throughout the time domain and also was
in good agreement with the analytical
solution, except at early time i.e. t < 0.1.
At early stages, the error in the pore
pressure at points near the loaded surface
is quite large for both the schemes. This is

a feature of the spatial interpolation [7]
used.

CONCLUSIONS

The "6-3" and "8-4" elements were applied
to Terzaghi’s problem for which exact
solution is available. Results of these
limited tests show;

i.The "6-3" triangular element exhibit a
directional bias and gave solution depends
on the orientation of the triangle in the
mesh particularly at early stages of
loading. As the time elapses this defect
reduces until completely vanishes at the
end of the loading history.

ii. The average solution of the "6-3"
element for non-symmetric mesh or the
solution of the "6-3"using symmetric mesh
are identical to that given by the "8-4"
element and the analytical solution.

iii. At very early stages of loading, both
"6-3" and "8-4" elements gave
unsatisfactory results. Apparently, special
singularity elements are required near
loaded drained surfaces.



Table (2): Pore Pressure History

Time in “6-3” Element -
seconds Symmetric “6-3” Element - Non-Symmetric Mesh "8-4" Element || Exact Solution
Mesh
Left Node Right Node Average
0.02 1036 1423 1.009 1216 1217 || 0987672331
004 1.04 1.333 0.974 11535 1.156 || 0.962044728
0.1 0.983 1.131 0.884 1.0075 1.0114 || 0.892813547
06 0597 0618 0.569 05935 057489 || 0575724889
11 0455 0.4436 04633 | 045345 045325 || 0.447440278
211 0.102 0.099 0.1074 0.1032 010346 || 0.107914459
411 0.0765 0.0749 0.0783 0.0766 0076389 || 0.077436735
61.1 0.064 0.0629 0.0651 0.064 0063934 || 0.063543454
81.1 0.0559 0.0552 0.0568 0.056 0055978 || 0.055168022
101.1 0.0502 0.0496 0.0509 | 005025 0050273 || 0.049411265
301.1 0.0299 0.0297 00302 | 002995 0029943 || 0.026214407
501.1 0.0177 0.0176 00179 | 001775 0017772 | 0.015576324
701.1 0.0105 0.0104 0.0105 | 001045 0010457 || 0.009272604
901.1 0.0063 0.0061 0.0062 | 000615 00061456 || 0.005520156
1101.1 0.0036 0.0036 0.00358 | 0.00359 0.0036 || 0.003286254
9101.1 0.0036 0.0036 0.00358 | 000359 0.0036 || 0.003286254
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Figure (4): Pore Pressure History




NOMENCLATURE

u; the Cartesian components of the
displacement vector

T the pore water pressure

f; the Cartesian components of the

body force vector per unit mass
Euij  the isothermal elasticity tensor
Kj the permeability tensor
[N]  the mass density of the saturated soil

F(t)  the mass density of water

t; the Cartesian components of the
traction vector

g the Cartesian components of the
fluid flux vector

T the Cartesian components of the
total stress tensor

Gij the Cartesian components of the

effective stress tensor

3 the Kronekr &

€jj the Cartesian components of the
solid deformation tensor
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