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أعط�ى نت�ائج  و 0ن�ه م�ن أوائ�ل العناص�ر المكت�شفةى تحلي�ل م�سائل الت�صلد كثيراف�"3-6"ستخدم العن�صرالمثلث ي� :خ�صة
اEأن ھذا العنصربه تحيز اتجاھى حيث أن النتائج تعتمد على وضع واتجاه المثلثات فى الشبكة . مرضية فى معظم أ0حوال

يھ�دف ھ�ذا و. يضمحل ھذا العيب حتى يت�شى نھائيا قرب نھاية التحمي�ل وبصفة خاصة عند بداية التحميل و بتقدم الزمن 
ھذا العيب عن طريق مقارنة اداء ھذا العنصرمع اداء تجنب اقتراح لمع " 3-6"البحث الى توضيح التحيز اEتجاھى للعنصر

متماثل�ة أو بأخ�ذ متوس�ط ولق�د أثبت�ت النت�ائج أن�ه باس�تخدام ش�بكات . عند حل مشكلة ذات حل تحليل�ى معل�وم" 4-8"العنصر
وأي�ضا م�ن نت�ائج الح�ل " 4-8"يعطي نتائج قريبة ج�دا م�ن نت�ائج الع�صر" 3-6"النتائج للشبكات الغيرمتماثلة فأن العنصر 

  .التحليلى

ABSTRACT  

The "6-3" triangular element has been widely used in consolidation analysis because it was 

the first one to be introduced and gave satisfactory results in most cases. Yet, it has a 

directional bias as the transient response depends on the orientation of the triangles in the 

mesh, particularly at the early stages of loading. As the time elapses this defect reduces until 

almost vanishes by the end of the loading history. The purpose of the present investigation 

was to illustrate the directional bias of the "6-3" element and provide a solution to this 

problem by comparing its performance with that of the "8-4" element in solving a problem 

with known analytical solution. It was found that by averaging the solution of the "6-3" 

element for non symmetric mesh or by using symmetric mesh, the "6-3" element provides a 

solution very close to that given by the "8-4" element as well as the analytical solution. 

Keywords: Consolidation, Variational formulations, Finite element discretization  

INTRODUCTION  

Sandhu and Wilson [1, 2] presented the first 

application of the finite element method to 

analysis of seepage in elastic media. 

Considerable progress has been made in the 

theoretical formulation as well as 

computational procedures. This includes 

variational formulations admitting limited 

smoothness of finite element bases [3, 4] and 

experimentation with several different spatial 

interpolation schemes and investigation of 

various temporal approximation methods [5-
11]. The finite element method has been 

applied to saturated soils exhibiting 

secondary compression [7, 10], nonlinear 

soil behavior [11-13], and to finite 

deformation [12]. The method has been 

extended by Aboustait [14, 15] to formulate 

the coupled theories of thermoelastic and 

thermoplastic consolidation and the 

associated variational principles. Further, the 

formulation was extended to include inertia 

and damping effects resulting in finite 

element Galerkin formulation for a dynamic 

consolidation theory by Aboustait and 

Sandhu [16, 17]. Least-Squares mixed finite 

element formulation is presented for Biot's 

consolidation using piecewise linear and 

quadratic interpolation for the fluid pressure 

and for the displacement, respectively [18]. 

Very Recently new approaches have been 

advanced based on mixed formulations. A 

fully coupled 3-D mixed finite element 

model is developed with the aim at 

alleviating the pore pressure numerical 

oscillations at the interface between 
materials with different permeability [19].  

In spatial discretization, Sandhu [1] proposed 

that the order of terms appearing in a 

convolution product in the variational 

principle be the same. This produced the 

"composite" element in which the order of 

polynomial interpolation for displacements 

was higher than that for fluid pressures. The 

composite element first proposed by Sandhu 

[1, 2] and used by Hwang [20] and others, 

was the "6-3" element with quadratic 

interpolation for displacements and linear  
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a) The “ 6-3 “ Composite Element  b) The “8-4” Composite Element 

Figure (1): The “6-3” and “8-4” Composite Elements 

interpolation for fluid pressures over triangular 

regions. Later, Sandhu [6] introduced the "8-4" 

element which had eight point biquadratic 

interpolations for displacements and four point 

isoperimetric quadrilateral for fluid pressures. 

Figure (1) illustrates the"6-3"and the "8-4" 

elements. Later this element was extended by 

Aboustait [14, 15] to obtain the "8-4-4" element 

which includes another four point isoperimetric 

quadrilateral interpolations for temperature 

fields. It is used in solving thermoelastic and 

thermoplastic consolidation problems. Several 

spatial interpolation schemes, besides the 

composite elements, have been tried by various 

investigators. Ghaboussi [5] introduced the "6-4" 

element which uses four point isoparametric 

quadrilaterals for both fields. However, two 

additional incompatible modes were included in 

the displacement approximation. This element 

has the economy while the additional "local" 

mode gives it the character of a "higher order" 

scheme. Smith [21] presented the "4-4" element 

and the formulation was similar to Ghaboussi's 

except that no incompatible modes were used. 

Prevost [9] proposed cautious use of "reduced 

integration" in conjunction with Smith's "4-4" 

element. Yokoo [22], Booker [23], and Vermeer 

[24] used triangular elements with linear 

interpolation for both displacement and fluid 
pressure fields, i.e., "3-3" element.  

All investigators have generally reported success 

with whatever scheme they used. Comparative 

studies of different elements are rare. Some 

comparisons between numerical performances of 

the "6-3" and the "8-4" elements were attempted 

by Sandhu et al [6, 7] and between the "6-4"and 

the "8-4" elements by Aboustait et al  [25, 26]. In 

evaluating various candidate schemes, [6, 7] 

proposed that an acceptable method meet the 

following requirements in addition to efficiency 

and accuracy; 

i. The interpolation scheme must conform to the 

assumptions regarding continuity as well as 

differentiability used in setting up the governing 

variational formulation.  

ii. It should be possible to generate the 

"undrained" solution, i.e. the state of fluid 

pressures and displacement at time t = 0+.  

iii. For sufficiently small time steps, the scheme 

should be insensitive to the choice of the time-

step size. 

Elements "6-3", "6-4" and "8-4" satisfy these 

previous requirements. However, the "6-3" and 

"8-4" composite elements are too expensive to be 

used in large problems. This has discouraged 

extension of the analysis to three-dimensions, 

and to nonlinear analysis and dynamic problems. 

The "4-4" element is more economical but has 

oscillatory errors [7]. The "6-3" element gives 

satisfactory results in most cases and the "8-4" 

element gives results almost identical to those 

from the "6-3" element but is more economical as 

it requires fewer nodal points and has less band-

width [6, 7]. A comparison between the "6-4" 

and "8-4" elements was carried by Aboustait et al 

[25, 26] in solving Terzaghi and Gibson 

problems. The "6-4" element gave a solution 

identical to that given by the "8-4"element but 

with significant savings in computational time. 

Also, it is distinctly superior to the "4-4" element 

as it does not have the oscillatory error of the "4-

4" element. Further, it directly gives the solution 
at time = 0+. This is because, in eliminating the 

additional degrees of freedom, the static 

condensation would, in general, result in non-

zero diagonal quantities. At the same time, it has 

the economy of the simpler element. 

The "6-3" triangular element still has been widely 

used particularly in commercial packages. Yet, it 

has the defect of directional bias since the 

transient response depends on the orientation of 

the triangles in the mesh.  

The purpose of the present investigation was to 

illustrate the directional bias of the "6-3" element 



Ronouoxu iji )(),( =

Ronoox
j

)(),( ππ =

3
ˆ Sonππ =

and provide a solution to this problem. This had 

been achieved by performing another comparison 

between the performance of the "6-3"and the"8-

4" elements in solving the same Terzaghi's 

problem in [6, 7]. Same boundary conditions, 

same loading, same material properties and same 

spatial and temporal discretizations were 

considered. However more attention was given to 

the transient response particularly at the early 

stages of loadings. Plane strain formulation is 

considered for both elements to solve Terzaghi's 

problem of one-dimensional consolidation that 

has well known analytical solution.  

EQUATIONS GOVERNING LINEAR 
ELASTIC SOIL CONSOLDATION 
Assuming pore water to be incompressible, the 

equation of force equilibrium of elementary 

volumes, within the spatial region of interest R, 

may be written in standard indicial notation as, 

[1];  

0,],[ , =++ jjilkklij fuE ρπ                            (1) 

Also, the mass continuity equation over that 

region can be expressed as; 

0,)],,([ 2 =++ jjjiiij ufK &ρπ                         (2) 

i.e., the out flow from any closed surface equals 

to the rate of volume reduction. Where ui, fi, Eklij, 

Kij, respectively denote the Cartesian components 

of the displacement vector, the body force vector 

per unit mass, the isothermal elasticity tensor and 

the permeability tensor. ρ  is the mass density of 

the saturated soil and ρ2 is that of water, π is the 

pore water pressure. With these field equations 

we associate the following boundary conditions; 
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Here, ti and qi are components of the traction and 

fluid flux vectors associated with surfaces 

embedded in the closure of R. S1 and S2 are 

complementary subsets of the boundary of the 

spatial region of interest and so are S3, S4. τij are  

components of the total stress tensor which is 

related to the effective stress tensor ijσ  and pore 

pressure by; 

   ijijij πδστ +=                                                (7) 

δij is the Kronecker delta. Noting that the 

effective stress tensor is related to the solid 

deformation ε ij by;  

  klijklij E εσ =                                                     (8)                                                     

The initial conditions for the problem are 

                         (9)          

                        (10) 

The variational principle corresponding to a the 

above mentioned field equations, boundary and 

initial conditions can be expressed as;                                     

iiiiijij
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Where g = 1 and * is indication of convolution. 

Q̂  and jt̂  are the prescribed  fluid flow and 

tractions on S2 and S4 respectively.                       

FINITE ELEMENT FORMULATION: 

Discretization of the governing functional for the 

two-field formulation followed by application of 

the variational principle (11) leads to the 

following matrix equation. 
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Where (t0, t1) is the single time step of interest, 

and; 

∆t = t1 - t0                                                        (13) 

{u(t1)}, {u(t0)}= vectors of nodal point values of 

the components of the displacement at time t1, t0, 

respectively  

{π (t1)},{π (t0)} = vectors of nodal point values 

of the pore water pressure at time t1, t0, 

respectively. 

{p1} = the vector of nodal point loads including 

applied nodal loads, boundary tractions, body 

forces, initial stresses and effect of displacement 

constraints .  

{p2} = the vector of nodal point fluxes including 

applied nodal fluxes,               boundary fluxes, 

body force effects and effects of specified pore 

water pressures. 

[Kuu] = spatial "stiffness matrix" for the elastic 

soil. 

[Kpp]  = the spatial "flow matrix" for the 

compressible fluid and ∆t= 1.  

 α = the coefficient characterizing single-step 

temporal discretization. 

[Kpu] = the coupling matrix representing the 

influence of pore pressure in the force 

equilibrium equation. 

[kpu] 
T
 = the coupling matrix representing the 

influence of soil volume change upon the nodal 

point fluid pressure.  

[Kpp] = the spatial fluid compressibility matrix. 

The matrix [Kuu] depends upon the interpolation 

scheme for displacements and [Kpp] depend upon 

the interpolation scheme for the pore water 

pressures. The coupling matrix [Kpu] involves 

spatial interpolation for both the field variables. 

The temporal discretization for the single step 

scheme is reflected in the value of the 

coefficientα. For linear interpolation α = 0.5. 

Equation (12) includes the "natural!" boundary 

conditions expressed by Equation (4) and (6).  

Equation (3) and (5) are satisfied by explicitly 

requiring ui = iû on S1 and ππ ˆ= on S3.    

Development of the vectors and matrices 

appearing in Equation (12) is given in [25].  

Terzaghi's problem of one-dimensional 

consolidation 

A computer program was developed for plane 

strain consolidation using both   "8-4" and "6-3" 

elements. The code was used to solve Terzaghi's 

problem of one-dimensional consolidation. For 

this problem, the theoretical solutions are known 

and, therefore, precise comparison was possible. 

For Terzaghi's problem, the dimensions of the 

consolidating soil column and soil properties 

were the same as in [6, 7, 23, 24]; i.e. soil depth h 

= 7 m, modulus of elasticity E = 6000 t/m
2
, 

Poisson's ratio = 0.4, coefficient of permeability 

K = 4x10-6 m/s. Figure (2) illustrates the 

geometry and the boundary conditions of the 

problem.  

 

Figure (2): One dimensional Consolidation  

 

Generally, finite element approximation involves 

discretization in the spatial as well as temporal 

domain. Accordingly, the investigation reported 

herein covered these two aspects. For the spatial 

discretizations, three different meshes were 

considered as shown in figure (3). Figure (3.a) 

and (3.b) illustrate biased and symmetric meshes 

that were used for the "6-3" element, while 

Figure (3.c) illustrates the mesh used for the "8-

4" element.  The first mesh for the "6-3" element 

consisted of 18 elements with 57 nodes and the 

second mesh consisted of 36 elements with 84 

nodes. While the "8-4" element mesh consisted 

of 9 elements with 48 nodes. 



 
 

 
a) Non-Symmetric Mesh for 

the “6-3” Element 

 
 

 
b) Symmetric Mesh for the 

“6-3” Element 

 
 

 
c) Mesh for the  

“8-4” Element 

Figure (3): Finite Element Discretization 

 

In the temporal discretization, linear 

interpolation was considered i.e., the 

coefficient α was given the value of 0.5. For 

each of the spatial discretization schemes the 

following temporal partitioning was 

considered starting with t= 0. 

10 steps   of ∆t = 0.01               over [0, 0. 1] 

10 steps   of ∆t = 0.1              over [0.1, 1.1] 

10 steps   of ∆t = 10             over [1.1, 101.1] 

10 steps   of ∆t = 100     over [101.1, 1101.1] 

8 steps   of ∆t = 1000   over [1101.1, 9101.1] 

Where, the time is in seconds. In this scheme 

∆t changes in a ratio 10:1 except that the 

change from ∆t = 0.1 to ∆t = 10 has a ratio of 

100:1.  

RESULTS OF ANALYSIS 

Table 1 shows the time settlement history for 

the three types of discretizations as well as 

the analytical solution. The settlements  

 

which are the vertical displacements of the 

two corner nodes on the top surface of the 

soil column were recorded. For the "6-3" 

element with non-symmetric mesh, the 

settlements of these two nodes are 

completely different at the early stages of 

loading, while they are the same for the other 

two meshes. As the time elapses, this 

difference decreases until it vanishes near the 

end of the loading history. Meanwhile the 

average settlement of these two nodes in the 

non-symmetric mesh for the "6-3" element 

practically coincided with the settlement of 

the symmetric mesh for the "6-3" element as 

well as response of the "8-4" element 

throughout the time domain and also was in 

good agreement with the analytical solution. 

Overestimates of early settlement are 

associated with all spatial discretizations 

schemes considered. Also, it was found that 

the surface settlement calculated is 
insensitive to the temporal discretizations 

and the sudden change in the size of ∆t.

 

 

 



Table (1): Surface Settlement History 

Non-Symmetric Mesh for the    “6-3” Element 

Time   (sec) 

Symmetric Mesh 

for the “6-3” 

Element 

Left Node Right Node Average 

Element    

    "8-4" 
Exact Solution 

0.02 4.6412E-06 2.7936E-06 7.0104E-06 4.9020E-06 5.2770E-06 5.7255E-06 

0.6 1.5091E-05 1.6537E-05 1.3973E-05 1.5255E-05 1.5881E-05 1.5459E-05 

1.1 2.0646E-05 2.1661E-05 1.9801E-05 2.0731E-05 2.1221E-05 2.0877E-05 

21.1 8.1150E-05 8.0815E-05 8.1492E-05 8.1154E-05 9.1394E-05 9.1423E-05 

41.1 1.2051E-04 1.2034E-04 1.2066E-04 1.2050E-04 1.2815E-04 1.2760E-04 

81.1 1.7459E-04 1.7450E-04 1.7467E-04 1.7458E-04 1.8022E-04 1.7924E-04 

301.1 3.1443E-04 3.1440E-04 3.1446E-04 3.1443E-04 3.4446E-04 3.4205E-04 

901.1 4.9727E-04 4.9726E-04 4.9727E-04 4.9727E-04 5.0352E-04 5.0166E-04 

2101.1 5.3400E-04 5.3400E-04 5.3400E-04 5.3400E-04 5.4778E-04 5.4253E-04 

4101.1 5.4425E-04 5.4425E-04 5.4425E-04 5.4425E-04 5.4456E-04  5.4443E-04 

6101.1 5.4444E-04 5.4444E-04 5.4444E-04 5.4444E-04 5.4440E-04 5.4444E-04 

9101.1 5.4445E-04 5.4445E-04  5.4444E-04 5.4444E-04 5.4440E-04 5.4444E-04 

Table 2 and figure (4) show the pore 

pressure history for the three types of 

discretizations as well as the analytical 

solution. The pore pressure at the two 

corner nodes located at depth = 2/70 of the 

total height, measured from the top surface 

of the soil column, were recorded. Same as 

for the surface settlement, the pore 

pressure at these nodes in the non-

symmetric mesh for the "6-3" are 

completely different at the early stages of 

loading, while they are the same for the 

other two meshes. As the time elapses, this 

difference decreases until vanishes near 

the end of the loading history. Also, the 

average pore pressure at these two nodes 

for the non-symmetric mesh for the "6-3" 

element practically coincided with the 

response of the symmetric mesh for the "6-

3" element as well as the "8-4" element 

throughout the time domain and also was 
in good agreement with the analytical 

solution, except at early time i.e. t < 0.1. 

At early stages, the error in the pore 

pressure at points near the loaded surface 

is quite large for both the schemes. This is 

a feature of the spatial interpolation [7] 

used. 

CONCLUSIONS 

The "6-3" and "8-4" elements were applied 

to Terzaghi’s problem for which exact 

solution is available. Results of these 

limited tests show; 

i. The "6-3" triangular element exhibit a 

directional bias and gave solution depends 

on the orientation of the triangle in the 

mesh particularly at early stages of 

loading. As the time elapses this defect 

reduces until completely vanishes at the 

end of the loading history.  

ii. The average solution of the "6-3" 

element for non-symmetric mesh or the 

solution of the "6-3"using symmetric mesh 

are identical to that given by the "8-4" 

element and the analytical solution.  

iii. At very early stages of loading, both 

"6-3" and "8-4" elements gave 

unsatisfactory results. Apparently, special 

singularity elements are required near 

loaded drained surfaces. 

 

 



Table (2): Pore Pressure History 

 

Figure (4): Pore Pressure History 

 

 

  

“6-3” Element - Non-Symmetric Mesh 
Time in  

seconds 

“6-3” Element - 

Symmetric 

Mesh 

Left Node Right Node Average  

"8-4" Element Exact Solution 

0.02 
1.036 

1.423 1.009 1.216 1.217 0.987672331 

0.04 1.04 1.333 0.974 1.1535 1.156 0.962044728 

0.1 0.983 1.131 0.884 1.0075 1.0114 0.892813547 

0.6 0.597 0.618 0.569 0.5935 0.57489 0.575724889 

1.1 0.455 0.4436 0.4633 0.45345 0.45325 0.447440278 

21.1 0.102 0.099 0.1074 0.1032 0.10346 0.107914459 

41.1 0.0765 0.0749 0.0783 0.0766 0.076389 0.077436735 

61.1 0.064 0.0629 0.0651 0.064 0.063934 0.063543454 

81.1 0.0559 0.0552 0.0568 0.056 0.055978 0.055168022 

101.1 0.0502 0.0496 0.0509 0.05025 0.050273 0.049411265 

301.1 0.0299 0.0297 0.0302 0.02995 0.029943 0.026214407 

501.1 0.0177 0.0176 0.0179 0.01775 0.017772 0.015576324 

701.1 0.0105 0.0104 0.0105 0.01045 0.010457 0.009272604 

901.1 0.0063 0.0061 0.0062 0.00615 0.0061456 0.005520156 

1101.1 0.0036 0.0036 0.00358 0.00359 0.0036 0.003286254 

9101.1 
0.0036 

0.0036 0.00358 0.00359 0.0036 0.003286254 



NOMENCLATURE 
ui the Cartesian components of the  

displacement vector 

π the pore water pressure 

fi the Cartesian components of the  

body force vector per unit mass 

Eklij the isothermal elasticity tensor 

Kij the permeability tensor 

[N] the mass density of the saturated soil 

F(t) the mass density of water 

ti the Cartesian components of the  

traction vector 

qi the Cartesian components of the  

fluid flux vector 

τij the Cartesian components of the  

total stress tensor 

σij the Cartesian components of the  

effective stress tensor 

δ ij the Kronekr δ 

ε ij the Cartesian components of the  

solid deformation tensor 
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